Aus ML2R wurde das Lamarr-Institut – alle aktuellen Publikationen finden Sie hier!

Publikationen mit Bezug zum Kompetenzzentrum Maschinelles Lernen Rhein-Ruhr (ML2R)

2022

T. H. Schulz, P. Welke, S. Wrobel: Graph Filtration Kernels. AAAI, 2022.

N. Andrienko, G. Andrienko, L. Adilova, S. Wrobel: Visual Analytics for Human-Centered Machine Learning. In: IEEE Computer Graphics and Applications 42(1), 2022, 123-133.

D. Antweiler, M. Marmening, N. Marheineke, A. Schmeißer, R. Wegener, P. Welke: Graph-Based Tensile Strength Approximation of Random Nonwoven Materials by Interpretable Regression. In: Machine Learning with Applications 8, 2022.

H.-J. Jin, T. Dong, L. Hou, J. Li, et al: How Can Cross-lingual Knowledge Contribute Better to Fine-Grained Entity Typing?. ACL, 2022.

C. Bauckhage, R. Sifa: Gradient Flows for Linear Discriminant Analysis. LION, 2022.

M. Amir, C. Bauckhage, A. Chircu, C. Czarnecki, C. Knopf, N. Piatkowski, E. Sultanow: What Can We Expect from (Quantum) Digital Twins?. Wirtschaftsinformatik, 2022.

E. Sultanoow, C. Bauckhage, C. Knopf, N. Piatkowski: Sicherheit von Quantum Machine Learning. In: Wirtschaftsinformatik & Management 14, 2022, 144-152.

C. Bauckhage, T. Gerlach, N. Piatkowski: QUBOs for Sorting Lists and Building Trees. arXiv preprint, 2022.

L. Hillebrand, T. Deusser, C. Bauckhage, R. Sifa: KPI-BERT: A Joint Named Entity Recognition and Relation Extraction for Financial Reports. ICPR, 2022.

T. H. Schulz, P. Welke, T. Horvath, S. Wrobel: A Generalized Weisfeiler-Lehman Graph Kernel. In: Machine Learning 111, 2022, 2601-2629.

D. Biesner, R. Ramamurthy, R. Stenzl, M. Luebbering, L. Hillebrand, A. Ladi, M. Pielka, R. Loitz, C. Bauckhage, R. Sifa: Anonymization of German Financial Documents Using Neural Network- Based Language Models with Contextual Word Representations. In: International Journal of Data Science and Analytics 13, 2022, 151-161.

D. Biesner, R. Sifa, C. Bauckhage, B. Kliem: Solving Subset Sum Problems using Binary Optimization with Applications in Auditing and Financial Data Analysis. In: TechRxiv preprint, 2022.

K. Cvejoski, R. Sánchez, C. Bauckhage, C. Ojeda: Dynamic Review-based Recommenders. Data Science – Analytics and Applications, 2022.

K. Beckh, S. Müller, S. Rüping: A Quantitative Human-Grounded Evaluation Process for Explainable ML. HCXAI Workshop at CHI, 2022.

A. Saadallah, M. Jakobs, K. Morik: Explainable Online Ensemble of Deep Neural Network Pruning for Time Series Forecasting. In: Machine Learning, 2022.

H. Liu, M. Brehler, M. Ravishankar, N. Vasilache, B. Vanik, S. Laurenzo: TinyIREE: An ML Execution Environment for Embedded Systems from Compilation to Deployment. In: IEEE Micro, 2022.

R. L. Wilking, M. Jakobs, K. Morik: Fooling Perturbation-Based Explainability Methods. Trustworthy Artificial Intelligence Workshop at ECML PKDD, 2022.

R. Fischer, M. Jakobs, S. Mücke, K. Morik: A Unified Framework for Assessing Energy Efficiency of Machine Learning. Data Science for Social Good Workshop at ECML PKDD, 2022.

K. Morik, H. Kotthaus, L. Heppe, D. Heinrich, R. Fischer, S. Mücke, A. Pauly, M. Jakobs, N. Piatkowski: Yes We Care! – Certification for Machine Learning Methods through the Care Label Framework. In: Frontiers in Artificial Intelligence, 2022.

M. Jakobs, H. Kotthaus, I. Röder, M. Baritz: SancScreen: Towards a real-world dataset for evaluating explainability methods. LWDA, 2022.

L. Pucknat, M. Pielka, R. Sifa: Towards Informed Pre-Training for Critical Error Detection in English-German. LWDA, 2022.

C. L. Chapman, L. Hillebrand, M. R. Stenzel, T. Deusser, D. Biesner, C. Bauckhage, R. Sifa: Towards Generating Financial Reports from Tabular Data Using Transformers. CD-MAKE, 2022.

C. Bauckhage, H. Schneider, B. Wulff, R. Sifa: Gradient Flows for L2 Support Vector Machine Training. ICML, 2022.

A. Gouda, A. Ghanem, C. Reining: DoPose-6D dataset for object segmentation and 6D pose estimation. ICMLA, 2022.

J. Rutinowski, C. Pionzewski, T. Chilla, C. Reining, M. ten Hompel: Computer Vision Based Re-Identification of Wooden Euro-pallets. ICMLA, 2022.

T. Deußer, S. M. Ali, L. Hillebrand, D. Nurchalifah, B. Jacob, C. Bauckhage, R. Sifa: KPI-EDGAR: A Novel Dataset and Accompanying Metric for Relation Extraction from Financial Documents. ICMLA, 2022.

L. Hillebrand, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, C. Bauckhage, R. Sifa: Towards automating Numerical Consistency Checks in Financial Reports. BigData, 2022.

D. Boiar, N. Killich, L. Schulte, V. H. Moreno, J. Deuse, T. Liebig: Forecasting Algae Growth in Photo-Bioreactors using Attention LSTMs. AI4EA Workshop at SEFM, 2022.