ML2R became the Lamarr Institute – find all current publications here!
Publications related to the Competence Center Machine Learning Rhine-Ruhr (ML2R)
2022
T. H. Schulz, P. Welke, S. Wrobel: Graph Filtration Kernels. AAAI, 2022.
H. Tan, H. Kotthaus: Surrogate Model-Based Explainability Methods for Point Cloud NNs. WACV, 2022.
N. Andrienko, G. Andrienko, L. Adilova, S. Wrobel: Visual Analytics for Human-Centered Machine Learning. In: IEEE Computer Graphics and Applications 42(1), 2022, 123-133.
D. Antweiler, M. Marmening, N. Marheineke, A. Schmeißer, R. Wegener, P. Welke: Graph-Based Tensile Strength Approximation of Random Nonwoven Materials by Interpretable Regression. In: Machine Learning with Applications 8, 2022.
H.-J. Jin, T. Dong, L. Hou, J. Li, et al: How Can Cross-lingual Knowledge Contribute Better to Fine-Grained Entity Typing?. ACL, 2022.
C. Bauckhage, R. Sifa: Gradient Flows for Linear Discriminant Analysis. LION, 2022.
M. Amir, C. Bauckhage, A. Chircu, C. Czarnecki, C. Knopf, N. Piatkowski, E. Sultanow: What Can We Expect from (Quantum) Digital Twins?. Wirtschaftsinformatik, 2022.
E. Sultanoow, C. Bauckhage, C. Knopf, N. Piatkowski: Sicherheit von Quantum Machine Learning. In: Wirtschaftsinformatik & Management 14, 2022, 144-152.
C. Bauckhage, T. Gerlach, N. Piatkowski: QUBOs for Sorting Lists and Building Trees. arXiv preprint, 2022.
L. Hillebrand, T. Deusser, C. Bauckhage, R. Sifa: KPI-BERT: A Joint Named Entity Recognition and Relation Extraction for Financial Reports. ICPR, 2022.
T. H. Schulz, P. Welke, T. Horvath, S. Wrobel: A Generalized Weisfeiler-Lehman Graph Kernel. In: Machine Learning 111, 2022, 2601-2629.
D. Biesner, R. Ramamurthy, R. Stenzl, M. Luebbering, L. Hillebrand, A. Ladi, M. Pielka, R. Loitz, C. Bauckhage, R. Sifa: Anonymization of German Financial Documents Using Neural Network- Based Language Models with Contextual Word Representations. In: International Journal of Data Science and Analytics 13, 2022, 151-161.
D. Biesner, R. Sifa, C. Bauckhage, B. Kliem: Solving Subset Sum Problems using Binary Optimization with Applications in Auditing and Financial Data Analysis. In: TechRxiv preprint, 2022.
K. Cvejoski, R. Sánchez, C. Bauckhage, C. Ojeda: Dynamic Review-based Recommenders. Data Science – Analytics and Applications, 2022.
K. Beckh, S. Müller, S. Rüping: A Quantitative Human-Grounded Evaluation Process for Explainable ML. HCXAI Workshop at CHI, 2022.
A. Saadallah, M. Jakobs, K. Morik: Explainable Online Ensemble of Deep Neural Network Pruning for Time Series Forecasting. In: Machine Learning, 2022.
H. Liu, M. Brehler, M. Ravishankar, N. Vasilache, B. Vanik, S. Laurenzo: TinyIREE: An ML Execution Environment for Embedded Systems from Compilation to Deployment. In: IEEE Micro, 2022.
R. L. Wilking, M. Jakobs, K. Morik: Fooling Perturbation-Based Explainability Methods. Trustworthy Artificial Intelligence Workshop at ECML PKDD, 2022.
R. Fischer, M. Jakobs, S. Mücke, K. Morik: A Unified Framework for Assessing Energy Efficiency of Machine Learning. Data Science for Social Good Workshop at ECML PKDD, 2022.
K. Morik, H. Kotthaus, L. Heppe, D. Heinrich, R. Fischer, S. Mücke, A. Pauly, M. Jakobs, N. Piatkowski: Yes We Care! – Certification for Machine Learning Methods through the Care Label Framework. In: Frontiers in Artificial Intelligence, 2022.
M. Jakobs, H. Kotthaus, I. Röder, M. Baritz: SancScreen: Towards a real-world dataset for evaluating explainability methods. LWDA, 2022.
L. Pucknat, M. Pielka, R. Sifa: Towards Informed Pre-Training for Critical Error Detection in English-German. LWDA, 2022.
D. Biesner, K. Cvejoski, R. Sifa: Combining Variational Autoencoders and Transformer Language Models for Improved Password Generation. ARES, 2022.
C. L. Chapman, L. Hillebrand, M. R. Stenzel, T. Deusser, D. Biesner, C. Bauckhage, R. Sifa: Towards Generating Financial Reports from Tabular Data Using Transformers. CD-MAKE, 2022.
C. Bauckhage, H. Schneider, B. Wulff, R. Sifa: Gradient Flows for L2 Support Vector Machine Training. ICML, 2022.
A. Gouda, A. Ghanem, C. Reining: DoPose-6D dataset for object segmentation and 6D pose estimation. ICMLA, 2022.
J. Rutinowski, C. Pionzewski, T. Chilla, C. Reining, M. ten Hompel: Computer Vision Based Re-Identification of Wooden Euro-pallets. ICMLA, 2022.
E. Brito, V. Gupta, E. Hahn, S. Giesselbach: Assessing the Performance Gain on Retail Article Categorization at the Expense of Explainability and Resource Efficiency. KI, 2022.
T. Deußer, S. M. Ali, L. Hillebrand, D. Nurchalifah, B. Jacob, C. Bauckhage, R. Sifa: KPI-EDGAR: A Novel Dataset and Accompanying Metric for Relation Extraction from Financial Documents. ICMLA, 2022.
L. Hillebrand, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, C. Bauckhage, R. Sifa: Towards automating Numerical Consistency Checks in Financial Reports. BigData, 2022.
D. Boiar, N. Killich, L. Schulte, V. H. Moreno, J. Deuse, T. Liebig: Forecasting Algae Growth in Photo-Bioreactors using Attention LSTMs. AI4EA Workshop at SEFM, 2022.
2021
L. von Rueden, T. Wirtz, F. Hueger, J. D. Schneider, N. Piatkowski, C. Bauckhage: Street-Map Based Validation of Semantic Segmentation in Autonomous Driving. ICPR, 2021.
P. Welke, F. Alkhoury, C. Bauckhage, S. Wrobel: Decision Snippet Features. ICPR, 2021.
C. Ojeda, R. Sanchez, K. Cvejoski, J. Schuecker, D. Biesner, C. Bauckhage, B. Georgiev: Auto Encoding Explanatory Examples with Stochastic Paths. ICPR, 2021.
C. Ojeda, B. Georgiev, K. Cvejoski, J. Schuecker, C. Bauckhage, R. Sanchez: Switching Dynamical Systems with Deep Neural Networks. ICPR, 2021.
C. Ojeda, K. Cvejoski, J. Schuecker, B. Georgiev, C. Bauckhage, R. Sanchez: An Adversarial Approach towards Queuing Systems Modeling. AAAI, 2021.
V. Olari, K. Cvejoski, Ø. Eide: Introduction to Machine Learning with Robots and Playful Learning. AAAI, 2021.
J. Kalofolias, P. Welke, J. Vreeken: SUSAN: The Structural Similarity Random Walk Kernel. SIAM Data Mining, 2021.
M. Pielka, R. Sifa, L. P. Hillebrand, D. Biesner, R. Ramamurthy, A.Ladi, C. Bauckhage: Tackling Contradiction Detection in German Using Machine Translation and End-to-End Recurrent Neural Networks. ICPR, 2021.
S. Hänold, N. Schlee, D. Antweiler, K. Beckh:Die Nachvollziehbarkeit von KI-Anwendungen in der Medizin – eine Betrachtung aus juristischer Perspektive mit Beispielszenarien. In: Medizinrecht 39, 2021, 516-523.
2020
M. Nanni, A. Gennady, A.-L. Barabasi, C. A. Boldrini, F. Bonchi, C. Cattuto, F. Chiaromonte, G. Commande, M. Conti, M. Cote, F. Dignum, V. Dignum, J. Domingo-Ferrer, P. Ferragina, F. Giannotti, R. Guidotti, D. Helbing, K. Kaski, J. Kertesz, S. Lehmann, B. Lepri, P. Lukowicz, S. Matwin, J. Megias, D. Megias, A. Monreale, K. Morik, N. Oliver, A. Passarella, A. Passerini, D. Pedreschi, A. Pentland, F. Pianesi, F. Pratesi, S. Rinzivillo, S. Ruggieri, A. Siebes, V. Torra, R. Trasarti, J. van der Hoven, A. Vespignani: Give More Data, Awareness and Control to Individual Citizens, and They Will Help COVID-19 Containment. In: Trans. Data Priv. 13, 2020, 61-66.
L. von Rueden, S. Mayer, R. Sifa, C. Bauckhage, J. Garcke: Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions. IDA, 2020.
M. Cekic, B. Georgiev, M. Mukherjee: Polyhedral Billiards, Eigenfunction Concentration and Almost Periodic Control. In: Commun. in Math. Phys. 377, 2020, 2451-2487.
A. Kiwan, S. Giesselbach, S. Rüping: Incorporating Knowledge Bases into SciBERT and BioBERT Pre-Trained Language Models. SciNLP Workshop at AKBC, 2020.
The Channel as a Traffic Sensor: Vehicle Detection and Classification Based on Radio Fingerprinting. In: IEEE Internet of Things Journal 7, 2020, 7392-7406.
C. Wietfeld:F. Finkeldey, A. Saadallah, P. Widerkehr, K. Morik: Real-Time Prediction of Process Forces in Milling Operations Using Synchronized Data Fusion of Simulation and Sensor Data. In: Eng. Appl. Artif. Intell. 94, 2020.
L. von Rueden, T. Wirtz, F. Hueger, J. D. Schneider, C. Bauckhage: Towards Map-Based Validation of Semantic Segmentation Masks. AIAD Workshop at ICML, 2020.
K. Y. Chai, J. Stenzel, J. Jost: Generation, Classification and Segmentation of Point Clouds in Logistic Context with PointNet++ and DGCNN. IRCE, 2020.
L. Hillebrand, D. Biesner, C. Bauckhage, R. Sifa: Interpretable Topic Extraction and Word Embedding Learning Using Row-Stochastic DEDICOM. CD-MAKE, 2020.
L. Pfahler, K. Morik: Semantic Search in Millions of Equations. KDD, 2020.
B. Kirsch, S. Giesselbach, T. Schmude, M. Völkening, F. Rostalsko, S.Rüping: Probabilistic Soft Logic to Improve Information Extraction in the Legal Domain. LWDA, 2020.
R. Fischer, M. Jakobs, S. Mücke, K. Morik: Solving Abstract Reasoning Tasks with Grammatical Evolution. LWDA, 2020.
J. Kindermann, K. Beckh: Fusing Multi-label Classification and Semantic Tagging. KDML Workshop at LWDA, 2020.
S. Buschjäger, L. Pfahler, J. Buss, K. Morik, W. Rhode: On-Site Gamma-Hadron Separation with Deep Learning on FPGAs. ECML PKDD, 2020.
L. Heppe, M. Kamp, L. Adilova, N. Piatkowski, D. Heinrich, K. Morik: Resource-Constrained On-Device Learning by Dynamic Averaging. PDFL Workshop at ECML PKDD, 2020.
R. Fischer, N. Piatkowski, C. Pelletier, G. Webb, F. Petitjean, K. Morik: No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series. DSAA, 2020.
C. Bauckhage, M. Bortz, R. Sifa: Shells within Minimum Enclosing Balls. DSAA, 2020.
A. Saadallah, K. Morik: Active Sampling for Learning Interpretable Surrogate Machine Learning Models. DSAA, 2020.
A. Mehler, W. Hemati, P. Welke, M. Konca, T. Uslu: Multiple Texts as a Limiting Factor in Online Learning: Quantifying (Dis-)similarities of Knowledge Networks across Languages. In: Frontiers in Education, 2020.
M. Bunse, D. Weichert, A. Kister, K. Morik: Optimal Probabilistic Classification in Active Class Selection. ICDM, 2020.
D. Antweiler, P. Welke: Temporal Graph Analysis for Outbreak Pattern Detection in COVID-19 Contact Tracing Networks. MLPH Workshop at NeurIPS, 2020.
C. Bauckhage, R. Ramamurthy, R. Sifa: Hopfield Networks for Vector Quantization. ICANN, 2020.
R. Ramamurthy, R. Sifa, M. Lübbering, C. Bauckhage: Guided Reinforcement Learning via Sequence Learning. ICANN, 2020.
M. Masoudinejad: Open-Loop Dynamic Modeling of Low-Budget Batteries with Low-Power Loads. In: MDPI Batteries 6(4), 2020, 50.
S. Buschjäger, P. J. Honysz, K. Morik: Randomized Outlier Detection with Trees. In: Int. J. Data Sci. Anal. 13, 2020, 91-204.
L. Franken, B. Georgiev, S. Muecke, M. Wolter, N. Piatkowski, C. Bauckhage: Gradient-Free Quantum Optimization on NISQ Devices. arxiv preprint, 2020.
M. Elahi, R. Hosseini, M. H. Rimaz, F. B. Moghaddam, C. Trattner: Visually-Aware Video Recommendation in the Cold Start. HT, 2020.
X. Han, T. Grubenmann, R. Cheng, S. C. Wong, X. Li, W. Sun: Traffic Incident Detection: A Trajectory-Based Approach. ICDE, 2020.
L. Reimann, G. Kniesel-Wünsche: Achieving Guidance in Applied Machine Learning through Software Engineering Techniques. Programming, 2020.
A. Sadeghi, D. Graux, H. S. Yazdi, J. Lehmann: MDE: Multiple Distance Embeddings for Link Prediction in Knowledge Graphs. ECAI, 2020.
H. Zafar, M. Tavakol, J. Lehmann: Distantly Supervised Question Parsing. ECAI, 2020.
F. A. Musyaffa, M. Vidal, F. Orlandi, J. Lehmann, H. Jabeen: IOTA: Interlinking of Heterogeneous Multilingual Open Fiscal DaTA. In: Expert Syst. Appl. 147(4), 2020.
M. Cremaschi, F. De Paoli, A. Rula, B. Spahiu: A Fully Automated Approach to a Complete Semantic Table Interpretation. In: Future Gener. Comput. Syst. 112, 2020, 478 – 500.
D. Tomaszuk, R. Angles, H. Thakkar: PGO: Describing Property Graphs in RDF. In: IEEE Access 8, 2020, 118355 – 118369.
S. Payrosangari, A. Sadeghi, D. Graux, J. Lehmann: Meta-hyperband: Hyperparameter Optimization with Meta-Learning and Coarse-to-Fine. IDEAL, 2020.
M. Nayyeri, X. Zhou, S. Vahdati, R. Izanloo, H. S. Yazdi, J. Lehmann: Let the Margin SlidE for Knowledge Graph Embeddings via a Correntropy Objective Function. IJCNN, 2020.
H. Jabeen, D. Graux, G. Sejdiu: Scalable Knowledge Graph Processing Using SANSA. In: Knowledge Graphs and Big Data Processing 12072, 2020, 105 – 121.
R. Nedelchev, R. Usbeck, J. Lehmann: Treating Dialogue Quality Evaluation as an Anomaly Detection Problem. LREC, 2020.
M. T. Chau, D. Esteves, J. Lehmann: A Neural-Based Model to Predict the Future Natural Gas Market Price through Open-domain Event Extraction. ESWC, 2020.
S. R. Bader, I. Grangel-González, P. Nanjappa, M. Vidal, M. Maleshkova: A Knowledge Graph for Industry 4.0. ESWC, 2020.
E. Kacupaj, H. Zafar, J. Lehmann, M. Maleshkova: VQuAnDa: Verbalization QUestion ANswering DAtaset. ESWC, 2020.
M. Nayyeri, S. Vahdati, X. Zhou, H. S. Yazdi, J. Lehmann: Embedding-Based Recommendations on Scholarly Knowledge Graphs. ESWC, 2020.
M. Nayyeri, C. Xu, S. Vahdati, N. Vassilyeva, E. Sallinger, H. S. Yazdi, J. Lehmann: Fantastic Knowledge Graph Embeddings and How to Find the Right Space for Them. ISWC, 2020.
C. Xu, M. Nayyeri, F. Alkhoury, H. S. Yazdi, J. Lehmann: Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding. ISWC, 2020.
T. Grubenmann, R. C. K. Cheng, L. V. S. Lakshmanan: TSA: A Truthful Mechanism for Social Advertising. WSDM, 2020.
I. O. Mulang, K. Singh, A. Vyas, S. Shekarpour, M. Vidal, S. Auer, J. Lehmann: Encoding Knowledge Graph Entity Aliases in Attentive Neural Network for Wikidata Entity Linking. WISE, 2020.
Z. Say, S. Fathalla, S. Vahdati, J. Lehmann, S. Auer: Ontology Design for Pharmaceutical Research Outcomes. TPDL, 2020.
M. Elias, M. R. Tavakoli, S. Lohmann, G. Kismihók, S. Auer: An OER Recommender System Supporting Accessibility Requirements. ASSETS, 2020.
H. Jabeen, E. Haziiev, G. Sejdiu, J. Lehmann: DISE: A Distributed in-Memory SPARQL Processing Engine over Tensor Data. ICSC, 2020.
H. Thakkar, R. Angles, M. Rodriguez, S. Mallette, J. Lehmann: Let’s Build Bridges, Not Walls: SPARQL Querying of TinkerPop Graph Databases with Sparql-Gremlin. ICSC, 2020.
R. Angles, H. Thakkar, D. Tomaszuk: Mapping RDF Databases to Property Graph Databases. In: IEEE Access 8, 2020, 86091 – 86110.
H. Jabeen, J. Weinz, J. Lehmann: AutoChef: Automated Generation of Cooking Recipes. CEC, 2020.
H. Jabeen: Big Data Outlook, Tools, and Architectures. In: Knowledge Graphs and Big Data Processing, 2020, 35 – 55.
M. Tasnim, D. Collarana, D. Graux, M. Vidal: Context-Based Entity Matching for Big Data. In: Knowledge Graphs and Big Data Processing, 2020, 122 – 146.
J. Rose, J. Lehmann: CASQAD – A New Dataset for Context-Aware Spatial Question Answering. ISWC, 2020.
I. O. Mulang’, K. Singh, C. Prabhu, A. Nadgeri, J. Hoffart, J. Lehmann: Evaluating the Impact of Knowledge Graph Context on Entity Disambiguation Models. CIKM, 2020.
J. Armitage, E. Kacupaj, G. Tahmasebzadeh, Swati, M. Maleshkova, R. Ewerth, J. Lehmann: MLM: A Benchmark Dataset for Multitask Learning with Multiple Languages and Modalities. CIKM, 2020.
3D Learning and Reasoning in Link Prediction Over Knowledge Graphs. In: IEEE Access 8, 2020.
:. Auer: Semantic Representation of Physics Research Data. IC3K, 2020.
Say, S. Fathalla, S. Vahdati, J. Lehmann SJ. Armitage, S. Thakur, R. Tripathi, J. Lehmann, M. Maleshkova: Training Multimodal Systems for Classification with Multiple Objectives. CLEOPATRA Workshop at ESWC, 2020.
M. Galkin, P. Trivedi, G. Maheshwari, R. Usbeck, J. Lehmann: Message Passing for Hyper-Relational Knowledge Graphs. EMNLP, 2020.
C. Xu, M. Nayyeri, Y. Chen, J. Lehmann: Knowledge Graph Embeddings in Geometric Algebras. COLING, 2020.
C. Xu, M. Nayyeri, F. Alkhoury, H. S. Yazdi, J. Lehmann: TeRo: A Time-Aware Knowledge Graph Embedding via Temporal Rotation. COLING, 2020.
R. Nedelchev, J. Lehmann, R. Usbeck: Language Model Transformers as Evaluators for Open-Domain Dialogues. COLING, 2020.
E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana, M. Vidal: SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. CIKM, 2020.
A. Rivas, I. Grangel-González, D. Collarana, J. Lehmann, M. Vidal: Unveiling Relations in the Industry 4.0 Standards Landscape Based on Knowledge Graph Embeddings. DEXA, 2020.
D. Banerjee, D. Chaudhuri, M. Dubey, J. Lehmann: PNEL: Pointer Network Based End-To-End Entity Linking over Knowledge Graphs. ISWC, 2020.
C. Ojeda, R. Sanchez, K. Cvejoski, J. Schuecker, D. Biesner, C. Bauckhage, B. Georgiev: Auto Encoding Explanatory Examples with Stochastic Paths. ICPR, 2020.
C. Ojeda, B. Georgiev, K. Cvejoski, J. Schuecker, C. Bauckhage, R. Sanchez: Switching Dynamical Systems with Deep Neural Networks. ICPR, 2020.
L. v. Rüden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage, J. Schuecker: Informed Machine Learning – A Taxonomy and Survey of Integrating Knowledge into Learning Systems. In: IEEE Trans. Knowl. Data Eng., 2020.
P. H. Nguyen, R. Henkin, S. Chen, N. V. Andrienko, G. L. Andrienko, O. Thonnard, C. Turkay: VASABI: Hierarchical User Profiles for Interactive Visual User Behaviour Analytics. In: IEEE Trans. Vis. Comput. Graph 26(1), 2020, 77 – 86.
S. Chen, N. V. Andrienko, G. L. Andrienko, L. Adilova, J. Barlet, J. Kindermann, P. H: Nguyen, O. Thonnard, C. Turkay: LDA Ensembles for Interactive Exploration and Categorization of Behaviors. In: IEEE Trans. Vis. Comput. Graph 26(9), 2020, 2775 – 2792.
F. Seiffarth, T. Horvath, S. Wrobel: Maximal Closed Set and Half-Space Separations in Finite Closure Systems. ECML PKDD, 2020.
2019
T. Dong, Z. Wang, J. Li, C. Bauckhage, and A. B. Cremers: Triple Classification Using Regions and Fine-Grained Entity Typing. AAAI, 2019.
S. Hess, W. Duivesteijn, K.Morik, P.-J. Honysz: The SpectACl of Nonconvex Clustering: A Spectral Approach to Density-Based Clustering. AAAI, 2019.
S. Buschjäger, T. Liebig, K. Morik: Gaussian Model Trees for Traffic Imputation. ICPRAM, 2019.
A. Saadallah, N. Piatkowski, F. Finkeldey, P. Wiederkehr, K. Morik: Learning Ensembles in the Presence of Imbalanced Classes. ICPRAM, 2019.
G. Meschke, B.-T. Cao, A. Egorov, A. Saadallah, S. Freitag, K. Morik: Big Data and Simulation – A New Approach for Real-Time TBM Steering. In: Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art, 2019, 2681-2690.
T. Dong, C. Bauckhage, H. Jin, J. Li, O. Cremers, D. Speicher, A.B. Cremers, J. Zimmermann: Imposing Category Trees onto Word-Embeddings Using a Geometric Construction. ICLR, 2019.
V. Gupta, S. Giesselbach, S. Rüping, C. Bauckhage: Improving Word Embeddings Using Kernel PCA. RepL4NLP Workshop at ACL, 2019.
A. Saadallah, A. Egorov, B.-T. Cao, S. Freitag, K. Morik, G. Meschke: Active Learning for Accurate Settlement Prediction Using Numerical Simulations in Mechanized Tunneling. CIRP, 2019.
P. Welke, T. Horvath, S. Wrobel: Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests. In: Machine Learning 108, 2019, 1137-1164.
D. Trabold, T. Horvath, S. Wrobel: Effective Approximation of Parametrized Closure Systems over Transactional Data Streams. In: Machine Learning 109(2), 2019, 1147-1177.
N. Piatkowski: Distributed Generative Modelling with Sub-Linear Communication Overhead. DMLE Workshop at ECML PKDD, 2019.
S. Mücke, N. Piatkowski, K. Morik: Hardware Accelerated Learning at the Edge. DMLE Workshop at ECML PKDD, 2019.
B. Kirsch, Z. Niyazova, S. Rüping, M. Mock: Noise Reduction in Distant Supervision for Relation Extraction Using Probabilistic Soft Logic. DINA Workshop at ECML PKDD, 2019.
N. Piatkowski: Hyper-Parameter-Free Generative Modelling with Deep Boltzmann Trees. ECML PKDD, 2019.
M. Tavakol, S. Mair, K. Morik: HyperUCB: Hyperparameter Optimization Using Contextual Bandits. International Workshop at ECML PKDD, 2019.
L. Pfahler, J. Schill, K. Morik: The Search for Equations – Learning to Identify Similarities Between Mathematical Expressions. ECML PKDD, 2019.
A. Saadallah, F. Priebe, K. Morik: A Drift-based Dynamic Ensemble Members Selection Using Clustering for Time Series Forecasting. ECML PKDD, 2019.
P. Welke, T. Schulz: On the Necessity of Graph Kernel Baselines. Graph Embedding and Mining Workhop at ECML PKDD, 2019.
F. Seiffarth, T. Horváth, S. Wrobel: Maximal Closed Set and Half-Space Separations in Finite Closure Systems. ECML PKDD, 2019.
C. Bauckhage, R. Sifa, T. Dong: Prototypes within Minimum Enclosing Balls. Workshop and Special Session at ICANN, 2019.
R. Ramamurthy, C. Bauckhage, R. Sifa, J. Schücker, S. Wrobel: Leveraging Domain Knowledge for Reinforcement Learning Using MMC Architectures. ICANN, 2019.
C. Bauckhage, N. Piatkowski, R. Sifa, D. Hecker, S. Wrobel: A QUBO Formulation of the k-Medoids Problem. LWDA, 2019.
R. Fischer, N. Piatkowski, K. Morik: Parameter Sharing for Spatio-Temporal Process Models. LWDA, 2019.
S. Mücke, N. Piatkowski, K. Morik: Learning Bit by Bit: Extracting the Essence of Machine Learning. LWDA, 2019.
J. HaiLong, H. Lei, L. Juanzi, T. Dong: Fine-Grained Entity Typing via Hierarchical Multi Graph Convolutional Networks. EMNLP/IJCNLP, 2019.
R. Sifa, R. Yawar, R. Ramarmurthy, C. Bauckhage, K. Kersting: Matrix- and Tensor Factorization for Game Content Recommendation. In: KI – Künstliche Intelligenz 34, 2019, 57-67.
M. Masoudinejad: Data-Sets for Indoor Photovoltaic Behavior in Low Lighting Conditions. In: MPDI Data 5(2), 2019, 32.
S. Kerner, J. Leveling , M. Otten, O. Urbann, M. Vogel, L. Weickhmann: Anwendungsfelder von künstlicher Intelligenz in Industrie 4.0 Systemen. In: Handbuch Industrie 4.0, 2019, 1-24.
P. Tözün, H. Kotthaus: Scheduling Data-Intensive Tasks on Heterogeneous Many Cores. In: IEEE Data Eng. Bull., 2019.
H. Kotthaus, L. Schönberger, A. Lang, J. Chen, P. Marwedel: Can Flexible Multi-Core Scheduling Help to Execute Machine Learning Algorithms Resource-Efficiently? SCOPES, 2019.
S. Mücke, N. Piatkowski, K. Morik: Hardware Acceleration of Machine Learning Beyond Linear Algebra. International Workshop at ECML PKDD, 2019.
2018
R. Schiffers, K. Morik, A. Schulze Struchtrup, P.-J. Honysz, J. Wortberg: Anomaly Detection in Injection Molding Process Data Based on Unsupervised Learning. In: Journal of Plastics Technology, 2018, 301 – 347.
S. Hess, N. Piatkowski, K. Morik: The Trustworthy Pal: Controlling the False Discovery Rate in Boolean Matrix Factorization. SIAM SDM, 2018.
K. Morik, W. Kraemer (Hg.): Daten – wem gehören sie, wer speichert sie, wer darf auf sie zugreifen? 2018.
K. Morik: Daten – wem gehören sie, wer speichert sie, wer darf auf sie zugreifen? In: Daten – wem gehören sie, wer speichert sie, wer darf auf sie zugreifen? 2018, 15 – 47.
L. Adilova, S. Giesselbach, S. Rüping: Making Efficient Use of a Domain Expert’s Time in Relation Extraction. DMNLP Workshop at ECML PKDD 2017. arXiv:1807.04687 [cs.LG], 2018.
S. Hao, X. Ma, T. Dong, A. B. Cremers, C. Chun: An Assertion Framework for Mobile Robotic Programming with Spatial Reasoning. COMPSAC, 2018.
J. HaiLong, L. Hou, J. Li, T. Dong: Attributed and Predictive Entity Embedding for Fine-Grained Entity Typing in Knowledge Bases. COLING, 2018.
C. Bauckhage, C. Ojeda, R. Sifa, S. Wrobel: Adiabatic Quantum Computing for Kernel k=2 Means Clustering. LWDA, 2018.
C. Bauckhage, C. Ojeda, J. Schücker, R. Sifa, S. Wrobel: Informed Machine Learning Through Functional Composition. LWDA, 2018.
M. Bunse, N. Piatkowski, K. Morik: Towards a Unifying View on Deconvolution in Cherenkov Astronomy. LWDA, 2018.
E. Schubert, S. Hess, K. Morik: The Relationship of DBSCAN to Matrix Factorization and Spectral Clustering. LWDA, 2018.
R. Ramamurthy, C. Bauckhage, R. Sifa, S. Wrobel: Policy Learning Using SPSA. ICANN, 2018.
R. Sifa, D. Paurat, D. Trabold, C. Bauckhage: Simple Recurrent Neural Networks for Support Vector Machine Training. ICANN, 2018.
B. Wulff, J. Schücker, C. Bauckhage: SPSA for Layer-Wise Training of Deep Networks. ICANN, 2018.
Y. Cao, L. Hou, J. Li, Z. Liu, C. Li, X. Chen, T. Dong: Joint Representation Learning of Cross-lingual Words and Entities via Attentive Distant Supervision. EMNLP, 2018.
S. Buschjäger, K. Morik: Decision Tree and Random Forest Implementations for Fast Filtering of Sensor Data. In: IEEE Trans. on Circuits and Systems 65(1), 2018, 209-222.
P. Welke, T. Horvath, S. Wrobel: Probabilistic Frequent Subtrees for Efficient Graph Classification and Retrieval. In: Machine Learning 107(11), 2018, 1847 – 1873.
S. Giesselbach, K. Ullrich, M. Kamp, D. Paurat, T. Gärtner: Corresponding Projections for Orphan Screening. ML4H Workshop at NeurIPS, 2018.
M. Kamp, L. Adilova, J. Sicking, F. Hüger, P. Schlicht, T. Wirtz, S. Wrobel: Efficient Decentralized Deep Learning by Dynamic Model Averaging. ECML PKDD, 2018.
B. Kirsch, S. Giesselbach, D. Knodt, S. Rüping: Robust End-User-Driven Social Media Monitoring for Law Enforcement and Emergency Monitoring. In: Community-Oriented Policing and Technological Innovations, 2018, 29 – 36.
K. Morik, C. Bockermann, S. Buschjäger: Big Data Science. In: KI- Künstliche Intelligenz 32(1), 2018, 27 – 36.
H. Kotthaus: Methods for Efficient Resource Utilization in Statistical Machine Learning Algorithms. TUD, 2018.
C. Bauckhage, E. Brito, K. Cvejoski, C. Ojeda, J. Schücker, R. Sifa: Towards Shortest Paths via Adiabatic Quantum Computing. MLG, 2018.
2017
T. Liebig, N. Piatkowski, C. Bockermann, K. Morik: Dynamic route planning with real-time traffic predictions. In: Information Systems 64, 2017.
S. Hess, K. Morik, N. Piatkowski: The PRIMPING routine – Tiling through proximal alternating linearized minimization. In: Data Mining and Knowledge Discovery 31(4), 2017.
C. Bauckhage: A Neural Network Implementation of Frank-Wolfe Optimization. ICANN, 2017.
S. Hess, K. Morik: C-SALT: Mining Class-Specific ALTerations in Boolean Matrix Factorization. ECML PKDD, 2017.
K. Ullrich, M. Kamp, T. Gärtner, M. Vogt, S. Wrobel: Co-Regularised Support Vector Regression. ECML PKDD, 2017.
L. Pfahler, K. Morik, F. Elwert, S. Tabti, V. Krech: Learning Low-Rank Document Embeddings with Weighted Nuclear Norm Regularization. IEEE DSAA, 2017.
R. Sifa, C. Bauckhage: Online k-Maxoids Clustering. IEEE DSAA, 2017.
C. Bauckhage, E. Brito, K. Cvejoski, C. Ojeda, R. Sifa, S. Wrobel: Ising Models for Binary Clustering via Adiabatic Quantum Computing. EMMCVPR, 2017.
H. Kotthaus, J. Richter, A. Lang, J. Thomas, B. Bischl, P. Marwedel, J. Rahnenführer, M. Lang: RAMBO: Resource-Aware Model-Based Optimization with Scheduling for Heterogeneous Runtimes and a Comparison with Asynchronous Model-Based Optimization. LION, 2017.
2016
M. Neumann, R. Garnett, C. Bauckhage, K. Kersting: Propagation kernels: efficient graph kernels from propagated information. In: Machine Learning 102(2), 2016.
C. Pölitz, W. Duivesteijn, K. Morik: Interpretable domain adaptation via optimization over the Stiefel manifold. In: Machine Learning 104(2-3), 2016.
N. Piatkowski, K. Morik: Stochastic Discrete Clenshaw-Curtis Quadrature. ICML, 2016.
N. Piatkowski, S. Lee, K. Morik: Integer undirected graphical models for resource-constrained systems. In: Neurocomputing 173, 2016.
R. Sifa, S. Srikanth, A. Drachen, C. Ojeda, C. Bauckhage: Predicting Retention in Sandbox Games with Tensor Factorization-based Representation Learning. IEEE CIG, 2016.
J. Richter, H. Kotthaus, B. Bischl, P. Marwedel, J. Rahnenführer, M. Lang: Faster Model-Based Optimization through Resource-Aware Scheduling Strategies. LION, 2016.
I. Korb, H. Kotthaus, P. Marwedel: mmapcopy: Efficient Memory Footprint Reduction using Application-Knowledge. SAC, 2016.
- 2022
-
2022
T. H. Schulz, P. Welke, S. Wrobel: Graph Filtration Kernels. AAAI, 2022.
H. Tan, H. Kotthaus: Surrogate Model-Based Explainability Methods for Point Cloud NNs. WACV, 2022.
N. Andrienko, G. Andrienko, L. Adilova, S. Wrobel: Visual Analytics for Human-Centered Machine Learning. In: IEEE Computer Graphics and Applications 42(1), 2022, 123-133.
D. Antweiler, M. Marmening, N. Marheineke, A. Schmeißer, R. Wegener, P. Welke: Graph-Based Tensile Strength Approximation of Random Nonwoven Materials by Interpretable Regression. In: Machine Learning with Applications 8, 2022.
H.-J. Jin, T. Dong, L. Hou, J. Li, et al: How Can Cross-lingual Knowledge Contribute Better to Fine-Grained Entity Typing?. ACL, 2022.
C. Bauckhage, R. Sifa: Gradient Flows for Linear Discriminant Analysis. LION, 2022.
M. Amir, C. Bauckhage, A. Chircu, C. Czarnecki, C. Knopf, N. Piatkowski, E. Sultanow: What Can We Expect from (Quantum) Digital Twins?. Wirtschaftsinformatik, 2022.
E. Sultanoow, C. Bauckhage, C. Knopf, N. Piatkowski: Sicherheit von Quantum Machine Learning. In: Wirtschaftsinformatik & Management 14, 2022, 144-152.
C. Bauckhage, T. Gerlach, N. Piatkowski: QUBOs for Sorting Lists and Building Trees. arXiv preprint, 2022.
L. Hillebrand, T. Deusser, C. Bauckhage, R. Sifa: KPI-BERT: A Joint Named Entity Recognition and Relation Extraction for Financial Reports. ICPR, 2022.
T. H. Schulz, P. Welke, T. Horvath, S. Wrobel: A Generalized Weisfeiler-Lehman Graph Kernel. In: Machine Learning 111, 2022, 2601-2629.
D. Biesner, R. Ramamurthy, R. Stenzl, M. Luebbering, L. Hillebrand, A. Ladi, M. Pielka, R. Loitz, C. Bauckhage, R. Sifa: Anonymization of German Financial Documents Using Neural Network- Based Language Models with Contextual Word Representations. In: International Journal of Data Science and Analytics 13, 2022, 151-161.
D. Biesner, R. Sifa, C. Bauckhage, B. Kliem: Solving Subset Sum Problems using Binary Optimization with Applications in Auditing and Financial Data Analysis. In: TechRxiv preprint, 2022.
K. Cvejoski, R. Sánchez, C. Bauckhage, C. Ojeda: Dynamic Review-based Recommenders. Data Science – Analytics and Applications, 2022.
K. Beckh, S. Müller, S. Rüping: A Quantitative Human-Grounded Evaluation Process for Explainable ML. HCXAI Workshop at CHI, 2022.
A. Saadallah, M. Jakobs, K. Morik: Explainable Online Ensemble of Deep Neural Network Pruning for Time Series Forecasting. In: Machine Learning, 2022.
H. Liu, M. Brehler, M. Ravishankar, N. Vasilache, B. Vanik, S. Laurenzo: TinyIREE: An ML Execution Environment for Embedded Systems from Compilation to Deployment. In: IEEE Micro, 2022.
R. L. Wilking, M. Jakobs, K. Morik: Fooling Perturbation-Based Explainability Methods. Trustworthy Artificial Intelligence Workshop at ECML PKDD, 2022.
R. Fischer, M. Jakobs, S. Mücke, K. Morik: A Unified Framework for Assessing Energy Efficiency of Machine Learning. Data Science for Social Good Workshop at ECML PKDD, 2022.
K. Morik, H. Kotthaus, L. Heppe, D. Heinrich, R. Fischer, S. Mücke, A. Pauly, M. Jakobs, N. Piatkowski: Yes We Care! – Certification for Machine Learning Methods through the Care Label Framework. In: Frontiers in Artificial Intelligence, 2022.
M. Jakobs, H. Kotthaus, I. Röder, M. Baritz: SancScreen: Towards a real-world dataset for evaluating explainability methods. LWDA, 2022.
L. Pucknat, M. Pielka, R. Sifa: Towards Informed Pre-Training for Critical Error Detection in English-German. LWDA, 2022.
D. Biesner, K. Cvejoski, R. Sifa: Combining Variational Autoencoders and Transformer Language Models for Improved Password Generation. ARES, 2022.
C. L. Chapman, L. Hillebrand, M. R. Stenzel, T. Deusser, D. Biesner, C. Bauckhage, R. Sifa: Towards Generating Financial Reports from Tabular Data Using Transformers. CD-MAKE, 2022.
C. Bauckhage, H. Schneider, B. Wulff, R. Sifa: Gradient Flows for L2 Support Vector Machine Training. ICML, 2022.
A. Gouda, A. Ghanem, C. Reining: DoPose-6D dataset for object segmentation and 6D pose estimation. ICMLA, 2022.
J. Rutinowski, C. Pionzewski, T. Chilla, C. Reining, M. ten Hompel: Computer Vision Based Re-Identification of Wooden Euro-pallets. ICMLA, 2022.
E. Brito, V. Gupta, E. Hahn, S. Giesselbach: Assessing the Performance Gain on Retail Article Categorization at the Expense of Explainability and Resource Efficiency. KI, 2022.
T. Deußer, S. M. Ali, L. Hillebrand, D. Nurchalifah, B. Jacob, C. Bauckhage, R. Sifa: KPI-EDGAR: A Novel Dataset and Accompanying Metric for Relation Extraction from Financial Documents. ICMLA, 2022.
L. Hillebrand, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, C. Bauckhage, R. Sifa: Towards automating Numerical Consistency Checks in Financial Reports. BigData, 2022.
D. Boiar, N. Killich, L. Schulte, V. H. Moreno, J. Deuse, T. Liebig: Forecasting Algae Growth in Photo-Bioreactors using Attention LSTMs. AI4EA Workshop at SEFM, 2022.
- 2021
-
2021
L. von Rueden, T. Wirtz, F. Hueger, J. D. Schneider, N. Piatkowski, C. Bauckhage: Street-Map Based Validation of Semantic Segmentation in Autonomous Driving. ICPR, 2021.
P. Welke, F. Alkhoury, C. Bauckhage, S. Wrobel: Decision Snippet Features. ICPR, 2021.
C. Ojeda, R. Sanchez, K. Cvejoski, J. Schuecker, D. Biesner, C. Bauckhage, B. Georgiev: Auto Encoding Explanatory Examples with Stochastic Paths. ICPR, 2021.
C. Ojeda, B. Georgiev, K. Cvejoski, J. Schuecker, C. Bauckhage, R. Sanchez: Switching Dynamical Systems with Deep Neural Networks. ICPR, 2021.
C. Ojeda, K. Cvejoski, J. Schuecker, B. Georgiev, C. Bauckhage, R. Sanchez: An Adversarial Approach towards Queuing Systems Modeling. AAAI, 2021.
V. Olari, K. Cvejoski, Ø. Eide: Introduction to Machine Learning with Robots and Playful Learning. AAAI, 2021.
J. Kalofolias, P. Welke, J. Vreeken: SUSAN: The Structural Similarity Random Walk Kernel. SIAM Data Mining, 2021.
M. Pielka, R. Sifa, L. P. Hillebrand, D. Biesner, R. Ramamurthy, A.Ladi, C. Bauckhage: Tackling Contradiction Detection in German Using Machine Translation and End-to-End Recurrent Neural Networks. ICPR, 2021.
S. Hänold, N. Schlee, D. Antweiler, K. Beckh:Die Nachvollziehbarkeit von KI-Anwendungen in der Medizin – eine Betrachtung aus juristischer Perspektive mit Beispielszenarien. In: Medizinrecht 39, 2021, 516-523.
- 2020
-
2020
M. Nanni, A. Gennady, A.-L. Barabasi, C. A. Boldrini, F. Bonchi, C. Cattuto, F. Chiaromonte, G. Commande, M. Conti, M. Cote, F. Dignum, V. Dignum, J. Domingo-Ferrer, P. Ferragina, F. Giannotti, R. Guidotti, D. Helbing, K. Kaski, J. Kertesz, S. Lehmann, B. Lepri, P. Lukowicz, S. Matwin, J. Megias, D. Megias, A. Monreale, K. Morik, N. Oliver, A. Passarella, A. Passerini, D. Pedreschi, A. Pentland, F. Pianesi, F. Pratesi, S. Rinzivillo, S. Ruggieri, A. Siebes, V. Torra, R. Trasarti, J. van der Hoven, A. Vespignani: Give More Data, Awareness and Control to Individual Citizens, and They Will Help COVID-19 Containment. In: Trans. Data Priv. 13, 2020, 61-66.
L. von Rueden, S. Mayer, R. Sifa, C. Bauckhage, J. Garcke: Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions. IDA, 2020.
M. Cekic, B. Georgiev, M. Mukherjee: Polyhedral Billiards, Eigenfunction Concentration and Almost Periodic Control. In: Commun. in Math. Phys. 377, 2020, 2451-2487.
A. Kiwan, S. Giesselbach, S. Rüping: Incorporating Knowledge Bases into SciBERT and BioBERT Pre-Trained Language Models. SciNLP Workshop at AKBC, 2020.
The Channel as a Traffic Sensor: Vehicle Detection and Classification Based on Radio Fingerprinting. In: IEEE Internet of Things Journal 7, 2020, 7392-7406.
C. Wietfeld:F. Finkeldey, A. Saadallah, P. Widerkehr, K. Morik: Real-Time Prediction of Process Forces in Milling Operations Using Synchronized Data Fusion of Simulation and Sensor Data. In: Eng. Appl. Artif. Intell. 94, 2020.
L. von Rueden, T. Wirtz, F. Hueger, J. D. Schneider, C. Bauckhage: Towards Map-Based Validation of Semantic Segmentation Masks. AIAD Workshop at ICML, 2020.
K. Y. Chai, J. Stenzel, J. Jost: Generation, Classification and Segmentation of Point Clouds in Logistic Context with PointNet++ and DGCNN. IRCE, 2020.
L. Hillebrand, D. Biesner, C. Bauckhage, R. Sifa: Interpretable Topic Extraction and Word Embedding Learning Using Row-Stochastic DEDICOM. CD-MAKE, 2020.
L. Pfahler, K. Morik: Semantic Search in Millions of Equations. KDD, 2020.
B. Kirsch, S. Giesselbach, T. Schmude, M. Völkening, F. Rostalsko, S.Rüping: Probabilistic Soft Logic to Improve Information Extraction in the Legal Domain. LWDA, 2020.
R. Fischer, M. Jakobs, S. Mücke, K. Morik: Solving Abstract Reasoning Tasks with Grammatical Evolution. LWDA, 2020.
J. Kindermann, K. Beckh: Fusing Multi-label Classification and Semantic Tagging. KDML Workshop at LWDA, 2020.
S. Buschjäger, L. Pfahler, J. Buss, K. Morik, W. Rhode: On-Site Gamma-Hadron Separation with Deep Learning on FPGAs. ECML PKDD, 2020.
L. Heppe, M. Kamp, L. Adilova, N. Piatkowski, D. Heinrich, K. Morik: Resource-Constrained On-Device Learning by Dynamic Averaging. PDFL Workshop at ECML PKDD, 2020.
R. Fischer, N. Piatkowski, C. Pelletier, G. Webb, F. Petitjean, K. Morik: No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series. DSAA, 2020.
C. Bauckhage, M. Bortz, R. Sifa: Shells within Minimum Enclosing Balls. DSAA, 2020.
A. Saadallah, K. Morik: Active Sampling for Learning Interpretable Surrogate Machine Learning Models. DSAA, 2020.
A. Mehler, W. Hemati, P. Welke, M. Konca, T. Uslu: Multiple Texts as a Limiting Factor in Online Learning: Quantifying (Dis-)similarities of Knowledge Networks across Languages. In: Frontiers in Education, 2020.
M. Bunse, D. Weichert, A. Kister, K. Morik: Optimal Probabilistic Classification in Active Class Selection. ICDM, 2020.
D. Antweiler, P. Welke: Temporal Graph Analysis for Outbreak Pattern Detection in COVID-19 Contact Tracing Networks. MLPH Workshop at NeurIPS, 2020.
C. Bauckhage, R. Ramamurthy, R. Sifa: Hopfield Networks for Vector Quantization. ICANN, 2020.
R. Ramamurthy, R. Sifa, M. Lübbering, C. Bauckhage: Guided Reinforcement Learning via Sequence Learning. ICANN, 2020.
M. Masoudinejad: Open-Loop Dynamic Modeling of Low-Budget Batteries with Low-Power Loads. In: MDPI Batteries 6(4), 2020, 50.
S. Buschjäger, P. J. Honysz, K. Morik: Randomized Outlier Detection with Trees. In: Int. J. Data Sci. Anal. 13, 2020, 91-204.
L. Franken, B. Georgiev, S. Muecke, M. Wolter, N. Piatkowski, C. Bauckhage: Gradient-Free Quantum Optimization on NISQ Devices. arxiv preprint, 2020.
M. Elahi, R. Hosseini, M. H. Rimaz, F. B. Moghaddam, C. Trattner: Visually-Aware Video Recommendation in the Cold Start. HT, 2020.
X. Han, T. Grubenmann, R. Cheng, S. C. Wong, X. Li, W. Sun: Traffic Incident Detection: A Trajectory-Based Approach. ICDE, 2020.
L. Reimann, G. Kniesel-Wünsche: Achieving Guidance in Applied Machine Learning through Software Engineering Techniques. Programming, 2020.
A. Sadeghi, D. Graux, H. S. Yazdi, J. Lehmann: MDE: Multiple Distance Embeddings for Link Prediction in Knowledge Graphs. ECAI, 2020.
H. Zafar, M. Tavakol, J. Lehmann: Distantly Supervised Question Parsing. ECAI, 2020.
F. A. Musyaffa, M. Vidal, F. Orlandi, J. Lehmann, H. Jabeen: IOTA: Interlinking of Heterogeneous Multilingual Open Fiscal DaTA. In: Expert Syst. Appl. 147(4), 2020.
M. Cremaschi, F. De Paoli, A. Rula, B. Spahiu: A Fully Automated Approach to a Complete Semantic Table Interpretation. In: Future Gener. Comput. Syst. 112, 2020, 478 – 500.
D. Tomaszuk, R. Angles, H. Thakkar: PGO: Describing Property Graphs in RDF. In: IEEE Access 8, 2020, 118355 – 118369.
S. Payrosangari, A. Sadeghi, D. Graux, J. Lehmann: Meta-hyperband: Hyperparameter Optimization with Meta-Learning and Coarse-to-Fine. IDEAL, 2020.
M. Nayyeri, X. Zhou, S. Vahdati, R. Izanloo, H. S. Yazdi, J. Lehmann: Let the Margin SlidE for Knowledge Graph Embeddings via a Correntropy Objective Function. IJCNN, 2020.
H. Jabeen, D. Graux, G. Sejdiu: Scalable Knowledge Graph Processing Using SANSA. In: Knowledge Graphs and Big Data Processing 12072, 2020, 105 – 121.
R. Nedelchev, R. Usbeck, J. Lehmann: Treating Dialogue Quality Evaluation as an Anomaly Detection Problem. LREC, 2020.
M. T. Chau, D. Esteves, J. Lehmann: A Neural-Based Model to Predict the Future Natural Gas Market Price through Open-domain Event Extraction. ESWC, 2020.
S. R. Bader, I. Grangel-González, P. Nanjappa, M. Vidal, M. Maleshkova: A Knowledge Graph for Industry 4.0. ESWC, 2020.
E. Kacupaj, H. Zafar, J. Lehmann, M. Maleshkova: VQuAnDa: Verbalization QUestion ANswering DAtaset. ESWC, 2020.
M. Nayyeri, S. Vahdati, X. Zhou, H. S. Yazdi, J. Lehmann: Embedding-Based Recommendations on Scholarly Knowledge Graphs. ESWC, 2020.
M. Nayyeri, C. Xu, S. Vahdati, N. Vassilyeva, E. Sallinger, H. S. Yazdi, J. Lehmann: Fantastic Knowledge Graph Embeddings and How to Find the Right Space for Them. ISWC, 2020.
C. Xu, M. Nayyeri, F. Alkhoury, H. S. Yazdi, J. Lehmann: Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding. ISWC, 2020.
T. Grubenmann, R. C. K. Cheng, L. V. S. Lakshmanan: TSA: A Truthful Mechanism for Social Advertising. WSDM, 2020.
I. O. Mulang, K. Singh, A. Vyas, S. Shekarpour, M. Vidal, S. Auer, J. Lehmann: Encoding Knowledge Graph Entity Aliases in Attentive Neural Network for Wikidata Entity Linking. WISE, 2020.
Z. Say, S. Fathalla, S. Vahdati, J. Lehmann, S. Auer: Ontology Design for Pharmaceutical Research Outcomes. TPDL, 2020.
M. Elias, M. R. Tavakoli, S. Lohmann, G. Kismihók, S. Auer: An OER Recommender System Supporting Accessibility Requirements. ASSETS, 2020.
H. Jabeen, E. Haziiev, G. Sejdiu, J. Lehmann: DISE: A Distributed in-Memory SPARQL Processing Engine over Tensor Data. ICSC, 2020.
H. Thakkar, R. Angles, M. Rodriguez, S. Mallette, J. Lehmann: Let’s Build Bridges, Not Walls: SPARQL Querying of TinkerPop Graph Databases with Sparql-Gremlin. ICSC, 2020.
R. Angles, H. Thakkar, D. Tomaszuk: Mapping RDF Databases to Property Graph Databases. In: IEEE Access 8, 2020, 86091 – 86110.
H. Jabeen, J. Weinz, J. Lehmann: AutoChef: Automated Generation of Cooking Recipes. CEC, 2020.
H. Jabeen: Big Data Outlook, Tools, and Architectures. In: Knowledge Graphs and Big Data Processing, 2020, 35 – 55.
M. Tasnim, D. Collarana, D. Graux, M. Vidal: Context-Based Entity Matching for Big Data. In: Knowledge Graphs and Big Data Processing, 2020, 122 – 146.
J. Rose, J. Lehmann: CASQAD – A New Dataset for Context-Aware Spatial Question Answering. ISWC, 2020.
I. O. Mulang’, K. Singh, C. Prabhu, A. Nadgeri, J. Hoffart, J. Lehmann: Evaluating the Impact of Knowledge Graph Context on Entity Disambiguation Models. CIKM, 2020.
J. Armitage, E. Kacupaj, G. Tahmasebzadeh, Swati, M. Maleshkova, R. Ewerth, J. Lehmann: MLM: A Benchmark Dataset for Multitask Learning with Multiple Languages and Modalities. CIKM, 2020.
3D Learning and Reasoning in Link Prediction Over Knowledge Graphs. In: IEEE Access 8, 2020.
:. Auer: Semantic Representation of Physics Research Data. IC3K, 2020.
Say, S. Fathalla, S. Vahdati, J. Lehmann SJ. Armitage, S. Thakur, R. Tripathi, J. Lehmann, M. Maleshkova: Training Multimodal Systems for Classification with Multiple Objectives. CLEOPATRA Workshop at ESWC, 2020.
M. Galkin, P. Trivedi, G. Maheshwari, R. Usbeck, J. Lehmann: Message Passing for Hyper-Relational Knowledge Graphs. EMNLP, 2020.
C. Xu, M. Nayyeri, Y. Chen, J. Lehmann: Knowledge Graph Embeddings in Geometric Algebras. COLING, 2020.
C. Xu, M. Nayyeri, F. Alkhoury, H. S. Yazdi, J. Lehmann: TeRo: A Time-Aware Knowledge Graph Embedding via Temporal Rotation. COLING, 2020.
R. Nedelchev, J. Lehmann, R. Usbeck: Language Model Transformers as Evaluators for Open-Domain Dialogues. COLING, 2020.
E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana, M. Vidal: SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. CIKM, 2020.
A. Rivas, I. Grangel-González, D. Collarana, J. Lehmann, M. Vidal: Unveiling Relations in the Industry 4.0 Standards Landscape Based on Knowledge Graph Embeddings. DEXA, 2020.
D. Banerjee, D. Chaudhuri, M. Dubey, J. Lehmann: PNEL: Pointer Network Based End-To-End Entity Linking over Knowledge Graphs. ISWC, 2020.
C. Ojeda, R. Sanchez, K. Cvejoski, J. Schuecker, D. Biesner, C. Bauckhage, B. Georgiev: Auto Encoding Explanatory Examples with Stochastic Paths. ICPR, 2020.
C. Ojeda, B. Georgiev, K. Cvejoski, J. Schuecker, C. Bauckhage, R. Sanchez: Switching Dynamical Systems with Deep Neural Networks. ICPR, 2020.
L. v. Rüden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage, J. Schuecker: Informed Machine Learning – A Taxonomy and Survey of Integrating Knowledge into Learning Systems. In: IEEE Trans. Knowl. Data Eng., 2020.
P. H. Nguyen, R. Henkin, S. Chen, N. V. Andrienko, G. L. Andrienko, O. Thonnard, C. Turkay: VASABI: Hierarchical User Profiles for Interactive Visual User Behaviour Analytics. In: IEEE Trans. Vis. Comput. Graph 26(1), 2020, 77 – 86.
S. Chen, N. V. Andrienko, G. L. Andrienko, L. Adilova, J. Barlet, J. Kindermann, P. H: Nguyen, O. Thonnard, C. Turkay: LDA Ensembles for Interactive Exploration and Categorization of Behaviors. In: IEEE Trans. Vis. Comput. Graph 26(9), 2020, 2775 – 2792.
F. Seiffarth, T. Horvath, S. Wrobel: Maximal Closed Set and Half-Space Separations in Finite Closure Systems. ECML PKDD, 2020.
- 2019
-
2019
T. Dong, Z. Wang, J. Li, C. Bauckhage, and A. B. Cremers: Triple Classification Using Regions and Fine-Grained Entity Typing. AAAI, 2019.
S. Hess, W. Duivesteijn, K.Morik, P.-J. Honysz: The SpectACl of Nonconvex Clustering: A Spectral Approach to Density-Based Clustering. AAAI, 2019.
S. Buschjäger, T. Liebig, K. Morik: Gaussian Model Trees for Traffic Imputation. ICPRAM, 2019.
A. Saadallah, N. Piatkowski, F. Finkeldey, P. Wiederkehr, K. Morik: Learning Ensembles in the Presence of Imbalanced Classes. ICPRAM, 2019.
G. Meschke, B.-T. Cao, A. Egorov, A. Saadallah, S. Freitag, K. Morik: Big Data and Simulation – A New Approach for Real-Time TBM Steering. In: Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art, 2019, 2681-2690.
T. Dong, C. Bauckhage, H. Jin, J. Li, O. Cremers, D. Speicher, A.B. Cremers, J. Zimmermann: Imposing Category Trees onto Word-Embeddings Using a Geometric Construction. ICLR, 2019.
V. Gupta, S. Giesselbach, S. Rüping, C. Bauckhage: Improving Word Embeddings Using Kernel PCA. RepL4NLP Workshop at ACL, 2019.
A. Saadallah, A. Egorov, B.-T. Cao, S. Freitag, K. Morik, G. Meschke: Active Learning for Accurate Settlement Prediction Using Numerical Simulations in Mechanized Tunneling. CIRP, 2019.
P. Welke, T. Horvath, S. Wrobel: Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests. In: Machine Learning 108, 2019, 1137-1164.
D. Trabold, T. Horvath, S. Wrobel: Effective Approximation of Parametrized Closure Systems over Transactional Data Streams. In: Machine Learning 109(2), 2019, 1147-1177.
N. Piatkowski: Distributed Generative Modelling with Sub-Linear Communication Overhead. DMLE Workshop at ECML PKDD, 2019.
S. Mücke, N. Piatkowski, K. Morik: Hardware Accelerated Learning at the Edge. DMLE Workshop at ECML PKDD, 2019.
B. Kirsch, Z. Niyazova, S. Rüping, M. Mock: Noise Reduction in Distant Supervision for Relation Extraction Using Probabilistic Soft Logic. DINA Workshop at ECML PKDD, 2019.
N. Piatkowski: Hyper-Parameter-Free Generative Modelling with Deep Boltzmann Trees. ECML PKDD, 2019.
M. Tavakol, S. Mair, K. Morik: HyperUCB: Hyperparameter Optimization Using Contextual Bandits. International Workshop at ECML PKDD, 2019.
L. Pfahler, J. Schill, K. Morik: The Search for Equations – Learning to Identify Similarities Between Mathematical Expressions. ECML PKDD, 2019.
A. Saadallah, F. Priebe, K. Morik: A Drift-based Dynamic Ensemble Members Selection Using Clustering for Time Series Forecasting. ECML PKDD, 2019.
P. Welke, T. Schulz: On the Necessity of Graph Kernel Baselines. Graph Embedding and Mining Workhop at ECML PKDD, 2019.
F. Seiffarth, T. Horváth, S. Wrobel: Maximal Closed Set and Half-Space Separations in Finite Closure Systems. ECML PKDD, 2019.
C. Bauckhage, R. Sifa, T. Dong: Prototypes within Minimum Enclosing Balls. Workshop and Special Session at ICANN, 2019.
R. Ramamurthy, C. Bauckhage, R. Sifa, J. Schücker, S. Wrobel: Leveraging Domain Knowledge for Reinforcement Learning Using MMC Architectures. ICANN, 2019.
C. Bauckhage, N. Piatkowski, R. Sifa, D. Hecker, S. Wrobel: A QUBO Formulation of the k-Medoids Problem. LWDA, 2019.
R. Fischer, N. Piatkowski, K. Morik: Parameter Sharing for Spatio-Temporal Process Models. LWDA, 2019.
S. Mücke, N. Piatkowski, K. Morik: Learning Bit by Bit: Extracting the Essence of Machine Learning. LWDA, 2019.
J. HaiLong, H. Lei, L. Juanzi, T. Dong: Fine-Grained Entity Typing via Hierarchical Multi Graph Convolutional Networks. EMNLP/IJCNLP, 2019.
R. Sifa, R. Yawar, R. Ramarmurthy, C. Bauckhage, K. Kersting: Matrix- and Tensor Factorization for Game Content Recommendation. In: KI – Künstliche Intelligenz 34, 2019, 57-67.
M. Masoudinejad: Data-Sets for Indoor Photovoltaic Behavior in Low Lighting Conditions. In: MPDI Data 5(2), 2019, 32.
S. Kerner, J. Leveling , M. Otten, O. Urbann, M. Vogel, L. Weickhmann: Anwendungsfelder von künstlicher Intelligenz in Industrie 4.0 Systemen. In: Handbuch Industrie 4.0, 2019, 1-24.
P. Tözün, H. Kotthaus: Scheduling Data-Intensive Tasks on Heterogeneous Many Cores. In: IEEE Data Eng. Bull., 2019.
H. Kotthaus, L. Schönberger, A. Lang, J. Chen, P. Marwedel: Can Flexible Multi-Core Scheduling Help to Execute Machine Learning Algorithms Resource-Efficiently? SCOPES, 2019.
S. Mücke, N. Piatkowski, K. Morik: Hardware Acceleration of Machine Learning Beyond Linear Algebra. International Workshop at ECML PKDD, 2019.
- 2018
-
2018
R. Schiffers, K. Morik, A. Schulze Struchtrup, P.-J. Honysz, J. Wortberg: Anomaly Detection in Injection Molding Process Data Based on Unsupervised Learning. In: Journal of Plastics Technology, 2018, 301 – 347.
S. Hess, N. Piatkowski, K. Morik: The Trustworthy Pal: Controlling the False Discovery Rate in Boolean Matrix Factorization. SIAM SDM, 2018.
K. Morik, W. Kraemer (Hg.): Daten – wem gehören sie, wer speichert sie, wer darf auf sie zugreifen? 2018.
K. Morik: Daten – wem gehören sie, wer speichert sie, wer darf auf sie zugreifen? In: Daten – wem gehören sie, wer speichert sie, wer darf auf sie zugreifen? 2018, 15 – 47.
L. Adilova, S. Giesselbach, S. Rüping: Making Efficient Use of a Domain Expert’s Time in Relation Extraction. DMNLP Workshop at ECML PKDD 2017. arXiv:1807.04687 [cs.LG], 2018.
S. Hao, X. Ma, T. Dong, A. B. Cremers, C. Chun: An Assertion Framework for Mobile Robotic Programming with Spatial Reasoning. COMPSAC, 2018.
J. HaiLong, L. Hou, J. Li, T. Dong: Attributed and Predictive Entity Embedding for Fine-Grained Entity Typing in Knowledge Bases. COLING, 2018.
C. Bauckhage, C. Ojeda, R. Sifa, S. Wrobel: Adiabatic Quantum Computing for Kernel k=2 Means Clustering. LWDA, 2018.
C. Bauckhage, C. Ojeda, J. Schücker, R. Sifa, S. Wrobel: Informed Machine Learning Through Functional Composition. LWDA, 2018.
M. Bunse, N. Piatkowski, K. Morik: Towards a Unifying View on Deconvolution in Cherenkov Astronomy. LWDA, 2018.
E. Schubert, S. Hess, K. Morik: The Relationship of DBSCAN to Matrix Factorization and Spectral Clustering. LWDA, 2018.
R. Ramamurthy, C. Bauckhage, R. Sifa, S. Wrobel: Policy Learning Using SPSA. ICANN, 2018.
R. Sifa, D. Paurat, D. Trabold, C. Bauckhage: Simple Recurrent Neural Networks for Support Vector Machine Training. ICANN, 2018.
B. Wulff, J. Schücker, C. Bauckhage: SPSA for Layer-Wise Training of Deep Networks. ICANN, 2018.
Y. Cao, L. Hou, J. Li, Z. Liu, C. Li, X. Chen, T. Dong: Joint Representation Learning of Cross-lingual Words and Entities via Attentive Distant Supervision. EMNLP, 2018.
S. Buschjäger, K. Morik: Decision Tree and Random Forest Implementations for Fast Filtering of Sensor Data. In: IEEE Trans. on Circuits and Systems 65(1), 2018, 209-222.
P. Welke, T. Horvath, S. Wrobel: Probabilistic Frequent Subtrees for Efficient Graph Classification and Retrieval. In: Machine Learning 107(11), 2018, 1847 – 1873.
S. Giesselbach, K. Ullrich, M. Kamp, D. Paurat, T. Gärtner: Corresponding Projections for Orphan Screening. ML4H Workshop at NeurIPS, 2018.
M. Kamp, L. Adilova, J. Sicking, F. Hüger, P. Schlicht, T. Wirtz, S. Wrobel: Efficient Decentralized Deep Learning by Dynamic Model Averaging. ECML PKDD, 2018.
B. Kirsch, S. Giesselbach, D. Knodt, S. Rüping: Robust End-User-Driven Social Media Monitoring for Law Enforcement and Emergency Monitoring. In: Community-Oriented Policing and Technological Innovations, 2018, 29 – 36.
K. Morik, C. Bockermann, S. Buschjäger: Big Data Science. In: KI- Künstliche Intelligenz 32(1), 2018, 27 – 36.
H. Kotthaus: Methods for Efficient Resource Utilization in Statistical Machine Learning Algorithms. TUD, 2018.
C. Bauckhage, E. Brito, K. Cvejoski, C. Ojeda, J. Schücker, R. Sifa: Towards Shortest Paths via Adiabatic Quantum Computing. MLG, 2018.
- 2017
-
2017
T. Liebig, N. Piatkowski, C. Bockermann, K. Morik: Dynamic route planning with real-time traffic predictions. In: Information Systems 64, 2017.
S. Hess, K. Morik, N. Piatkowski: The PRIMPING routine – Tiling through proximal alternating linearized minimization. In: Data Mining and Knowledge Discovery 31(4), 2017.
C. Bauckhage: A Neural Network Implementation of Frank-Wolfe Optimization. ICANN, 2017.
S. Hess, K. Morik: C-SALT: Mining Class-Specific ALTerations in Boolean Matrix Factorization. ECML PKDD, 2017.
K. Ullrich, M. Kamp, T. Gärtner, M. Vogt, S. Wrobel: Co-Regularised Support Vector Regression. ECML PKDD, 2017.
L. Pfahler, K. Morik, F. Elwert, S. Tabti, V. Krech: Learning Low-Rank Document Embeddings with Weighted Nuclear Norm Regularization. IEEE DSAA, 2017.
R. Sifa, C. Bauckhage: Online k-Maxoids Clustering. IEEE DSAA, 2017.
C. Bauckhage, E. Brito, K. Cvejoski, C. Ojeda, R. Sifa, S. Wrobel: Ising Models for Binary Clustering via Adiabatic Quantum Computing. EMMCVPR, 2017.
H. Kotthaus, J. Richter, A. Lang, J. Thomas, B. Bischl, P. Marwedel, J. Rahnenführer, M. Lang: RAMBO: Resource-Aware Model-Based Optimization with Scheduling for Heterogeneous Runtimes and a Comparison with Asynchronous Model-Based Optimization. LION, 2017.
- 2016
-
2016
M. Neumann, R. Garnett, C. Bauckhage, K. Kersting: Propagation kernels: efficient graph kernels from propagated information. In: Machine Learning 102(2), 2016.
C. Pölitz, W. Duivesteijn, K. Morik: Interpretable domain adaptation via optimization over the Stiefel manifold. In: Machine Learning 104(2-3), 2016.
N. Piatkowski, K. Morik: Stochastic Discrete Clenshaw-Curtis Quadrature. ICML, 2016.
N. Piatkowski, S. Lee, K. Morik: Integer undirected graphical models for resource-constrained systems. In: Neurocomputing 173, 2016.
R. Sifa, S. Srikanth, A. Drachen, C. Ojeda, C. Bauckhage: Predicting Retention in Sandbox Games with Tensor Factorization-based Representation Learning. IEEE CIG, 2016.
J. Richter, H. Kotthaus, B. Bischl, P. Marwedel, J. Rahnenführer, M. Lang: Faster Model-Based Optimization through Resource-Aware Scheduling Strategies. LION, 2016.
I. Korb, H. Kotthaus, P. Marwedel: mmapcopy: Efficient Memory Footprint Reduction using Application-Knowledge. SAC, 2016.